Millimeter Wave Radiations Affect Membrane Hydration in Phosphatidylcholine Vesicles

نویسندگان

  • Amerigo Beneduci
  • Katia Cosentino
  • Giuseppe Chidichimo
چکیده

A clear understanding of the response of biological systems to millimeter waves exposure is of increasing interest for the scientific community due to the recent convincing use of these radiations in the ultrafast wireless communications. Here we report a deuterium nuclear magnetic resonance spectroscopy (²H-NMR) investigation on the effects of millimeter waves in the 53-78 GHz range on phosphocholine bio-mimetic membranes. Millimeter waves significantly affect the polar interface of the membrane causing a decrease of the heavy water quadrupole splitting. This effect is as important as inducing the transition from the fluid to the gel phase when the membrane exposure occurs in the neighborhood of the transition point. On the molecular level, the above effect can be well explained by membrane dehydration induced by the radiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydration and stability of sulfatide-containing phosphatidylethanolamine small unilamellar vesicles.

The effect of sulfatide on membrane hydration of 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) small unilamellar vesicles (SUVs) was investigated using steady-state and time-resolved fluorescence spectroscopy. The degree of hydration in the headgroup region of the bilayer lipids was assessed with the fluorescence lifetime of N-(5-dimethylaminonaphthalene-1-sulfonyl)dipalmitoylphosphatid...

متن کامل

Factors contributing to the distribution of cholesterol among phospholipid vesicles.

The distribution of cholesterol between vesicles of different lipid composition at equilibrium has been determined. Small, sonicated unilamellar vesicles and large unilamellar vesicles were incubated at a defined temperature, and aliquots were then obtained at selected times for analysis. Inclusion of a small amount of phosphatidylserine or phosphatidylinositol in the membrane does not apprecia...

متن کامل

Precision parameters from spin-probe studies of membranes using a partitioning technique. application to two model membrane vesicles.

A new version of the ESR spin probe partitioning method is developed and applied to the study of hydration properties of dimyristoyl-phosphatidylglycerol (DMPG) and dimyristoyl-phosphatidylcholine (DMPC) vesicles as functions of salt concentration and temperature above the lipid phase transition. The small spin probe di-tert-butyl nitroxide (DTBN) is used in order to achieve motionally narrowed...

متن کامل

Electroformation of Giant Unilamellar Vesicles on Stainless Steel Electrodes

Giant unilamellar vesicles (GUVs) are well-established model systems for studying membrane structure and dynamics. Electroformation, also referred to as electroswelling, is one of the most prevalent methods for producing GUVs, as it enables modulation of the lipid hydration process to form relatively monodisperse, defect-free vesicles. Currently, however, it is expensive and time-consuming comp...

متن کامل

Hydration properties and structure of phosphatidylcholine membranes in the presence of n-nonyl bromide.

Interaction of chemical fusogen n-nonyl bromide with a model membrane formed from phosphatidylcholine was studied using 2D-NMR spectra of heavy water and 31P-NMR proton decoupled spectra of the lipid phosphate group in multilamellar lipid dispersions. n-Nonyl bromide was found to influence the hydration layer of the model membrane. No participation of phosphatidylcholine molecules in non-bilaye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013